monomial$50140$ - significado y definición. Qué es monomial$50140$
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es monomial$50140$ - definición

POLYNOMIAL WITH FINITELY MANY TERMS OF THE FORM AXⁿ WHERE N ∈ ℕ
Laurent polynomials; Laurent monomial

Monomial         
POLYNOMIAL WHICH HAS ONLY ONE TERM
Monomials; Simple expression; Mononomial; Degree of a monomial; Power product
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered:
Monomial         
POLYNOMIAL WHICH HAS ONLY ONE TERM
Monomials; Simple expression; Mononomial; Degree of a monomial; Power product
·adj Consisting of but a single term or expression.
II. Monomial ·noun A single algebraic expression; that is, an expression unconnected with any other by the sign of addition, substraction, equality, or inequality.
Mononomial         
POLYNOMIAL WHICH HAS ONLY ONE TERM
Monomials; Simple expression; Mononomial; Degree of a monomial; Power product
·noun & ·adj Monomyal.

Wikipedia

Laurent polynomial

In mathematics, a Laurent polynomial (named after Pierre Alphonse Laurent) in one variable over a field F {\displaystyle \mathbb {F} } is a linear combination of positive and negative powers of the variable with coefficients in F {\displaystyle \mathbb {F} } . Laurent polynomials in X form a ring denoted F [ X , X 1 ] {\displaystyle \mathbb {F} [X,X^{-1}]} . They differ from ordinary polynomials in that they may have terms of negative degree. The construction of Laurent polynomials may be iterated, leading to the ring of Laurent polynomials in several variables. Laurent polynomials are of particular importance in the study of complex variables.